Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(4): 4324-4338, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38313493

RESUMO

Green synthesis of silver nanoparticles (AgNPs) using a plant extract has attracted significant attention in recent years. It is found as an alternative for other physicochemical approaches because of its simplicity, low cost, and eco-friendly rapid steps. In the present study, Ophiorrhiza mungos (Om)-mediated AgNPs have been shown to be effective bioadsorbents for methylene blue (MB) dye removal (88.1 ± 1.74%) just after 1 h at room temperature in the dark from an aqueous medium for the first time. Langmuir and Freundlich isotherms fit the experimental results having the correlation coefficient constants R2 = 0.9956 and R2 = 0.9838, respectively. From the Langmuir fittings, the maximum adsorption capacity and adsorption intensity were found to be 80.451 mg/g and 0.041, respectively, indicating the excellent performance and spontaneity of the process. Taking both models under consideration, interestingly, our findings indicated a fairly cooperative multilayer adsorption that might have been governed by chemisorption and physisorption, whereas the adsorption kinetics followed the pseudo-second-order kinetics mechanism. The positive and low values of enthalpy (ΔH0 = 4.91 kJ/mol) confirmed that adsorption is endothermic and physical in nature; however, the negative free energy and positive entropy value (ΔS0 = 53.69 J/mol K) suggested that the adsorption is spontaneous. The biosynthesized adsorbent was successfully reused up to the fifth cycle. A proposed reaction mechanism for the adsorption process of MB dye onto Om-AgNPs is suggested. The present study may offer a novel finding such as an effective and sustainable approach for the removal of MB dye from water using biosynthesized Om-AgNPs as reusable adsorbents at a comparatively faster rate at a low dose for industrial applications.

2.
Heliyon ; 9(5): e16072, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215826

RESUMO

In this work, the aqueous leaf extracts of three Ophiorrhiza genus species, namely Ophiorrhiza mungos (Om), Ophiorrhiza harrisiana (Oh) and Ophiorrhiza rugosa (Or), have been used as the reducing and capping agents to control the size of AgNPs, Om-AgNPs, Oh-AgNPs and Or-AgNPs, respectively and found to be an effective antimicrobial agent against a wide range of bacteria and fungi. The biosynthesized AgNPs were studied by UV-Visible spectrophotometer, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM) and Fourier transform infrared spectrometer (FTIR). The average particle sizes of Om-AgNPs, Oh-AgNPs and Or-AgNPs were measured as 17 nm, 22 nm and 26 nm, respectively, and observed to be spherical and face-centered cubic crystals. The antibacterial test of synthesized AgNPs was performed against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Vibrio cholerae where the maximum antibacterial activity was observed by reducing the nano-size and increasing the silver content of AgNPs. The antifungal effect of these three types of AgNPs on Penicillium notatum and Aspergillus niger was also evaluated and their growth with AgNPs concentrations of 450 µg/mL was inhibited up to 80-90% and 55-70%, respectively. The size-control synthesis of AgNPs using the Ophiorrhiza genus species is presented here for the first time where the synthesized AgNPs showed higher stability and antimicrobial activities. Therefore, this study might lead to synthesize AgNPs with different morphologies using plant extracts of the same genus but from different species and provide strong encouragement for future applications in treating infectious diseases.

3.
Heliyon ; 8(6): e09678, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35721680

RESUMO

The isomeric ligand LC, a saturated analogue of 2,9-C-meso-Me8[14]diene, on reflux with excess acrylonitrile afforded 1,8-N-pendant cyanoethyl derivative LCX. Interaction of LCX with cadmium(II) perchlorate, nitrate, acetate, and chloride salts produced six coordinated octahedral compounds, [Cd(LCX) (ClO4)2]∙2H2O, [Cd(LCX) (NO3)2], [Cd(LCX) (CH3COO)2], and [Cd(LCX)Cl2], respectively. Further, axial substitution reactions between [Cd(LCX) (ClO4)2]∙2H2O and KI, KBr, KCl, KSCN, and NaNO2 in a 1:2 ratio yielded six coordinated octahedral compounds, [Cd(LCX)I2]∙H2O, [Cd(LCX)Br2]∙2H2O, [Cd(LCX)Cl(ClO4)]∙2H2O, [Cd(LCX) (NCS)2]∙H2O, and [Cd(LCX) (NO2) (ClO4)]∙2H2O, respectively. All of the newly prepared compounds have been characterized by analytical, spectroscopic, molar conductivity, and magnetochemical data. The crystal structure of the ligand LCX was determined by x-ray crystallography which showed the 14-membered ring to adopt an extended chair conformation. Antibacterial activities of the newly formed cadmium(II) complexes against selected bacteria showed these to exhibit moderate and selective activity with 1-4 and 8 exhibiting greatest potency against the gram negative bacterium Salmonella typhi, and 5, 6, and 7 against the gram positive bacterium Bacillus wiedmannii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...